ISSN 1600-5368

## Bis(diethylammonium) tetrachloridocuprate(II)

#### Roger D. Willett<sup>a</sup> and Brendan Twamley<sup>b</sup>\*

<sup>a</sup>Chemistry Department, PO Box 644630, Washington State University, Pullman, WA 99164-4630, USA, and <sup>b</sup>University Research Office, 103 Morrill Hall, University of Idaho, Moscow, ID 83844-3010, USA Correspondence e-mail: btwamley@uidaho.edu

Received 14 September 2007; accepted 17 September 2007

Key indicators: single-crystal X-ray study; T = 84 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.069; data-to-parameter ratio = 26.7.

The structure of the title compound,  $(C_4H_{12}N)_2[CuCl_4]$  or  $[DEA]_2[CuCl_4]$  (DEA is diethylammonium), at 84 (2) K has three crystallographically independent  $[CuCl_4]^{2-}$  anions in the asymmetric unit, each with a different geometry. These geometries range from essentially square-planar to compressed tetrahedral geometry. The low-temperature structure reported here is the same as the room-temperature structure [Harlow & Simonsen (1976). *Am. Crystallogr. Assoc. Ser. 2 Program Abstr.* **4**, Abstract PBIO], thereby confirming the absence of a low-temperature phase transition.

#### **Related literature**

For related literature, see Bloomquist & Willett (1982); Halvorson *et al.* (1990); Harlow & Simonsen (1976); Kapustianik *et al.* (1994); Landee *et al.* (1978); Willett *et al.* (1974).



#### **Experimental**

#### Crystal data

 $\begin{array}{l} ({\rm C_4H_{12}N})_2[{\rm CuCl_4}] \\ M_r = 353.63 \\ {\rm Monoclinic}, \ P2_1/n \\ a = 7.2936 \ (15) \\ {\rm \AA} \\ b = 14.881 \ (3) \\ {\rm \AA} \\ c = 44.751 \ (9) \\ {\rm \AA} \\ \beta = 90.12 \ (3)^\circ \end{array}$ 

#### Data collection

Bruker SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002)  $T_{min} = 0.510, T_{max} = 0.551$   $V = 4857.1 (17) Å^{3}$ Z = 12 Mo K\alpha radiation \mu = 1.99 mm^{-1} T = 84 (2) K 0.35 \times 0.31 \times 0.30 mm

63568 measured reflections 11170 independent reflections 9931 reflections with  $I > 2\sigma(I)$  $R_{\text{int}} = 0.031$ 

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$   $wR(F^2) = 0.069$  S = 1.1511170 reflections

 $\begin{array}{l} \mbox{418 parameters} \\ \mbox{H-atom parameters constrained} \\ \mbox{$\Delta \rho_{\rm max}=0.41$ e $\AA^{-3}$} \\ \mbox{$\Delta \rho_{\rm min}=-0.36$ e $\AA^{-3}$} \end{array}$ 

#### **Table 1** Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                         | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------|-------------|-------------------------|--------------|--------------------------------------|
| N3-H3A····Cl2                            | 0.92        | 2.53                    | 3.3754 (19)  | 153                                  |
| $N3-H3A\cdots$ Cl1                       | 0.92        | 2.55                    | 3.192 (2)    | 127                                  |
| $N3-H3B \cdot \cdot \cdot Cl10^{i}$      | 0.92        | 2.30                    | 3.1986 (18)  | 167                                  |
| $N3-H3B\cdots Cl9^{i}$                   | 0.92        | 2.92                    | 3.421 (2)    | 116                                  |
| $N8-H8A\cdots Cl1$                       | 0.92        | 2.27                    | 3.1835 (18)  | 172                                  |
| N8−H8B···Cl3 <sup>ii</sup>               | 0.92        | 2.47                    | 3.3076 (19)  | 151                                  |
| N8−H8B···Cl2 <sup>ii</sup>               | 0.92        | 2.64                    | 3.3148 (18)  | 130                                  |
| $N13 - H13A \cdot \cdot \cdot Cl5$       | 0.92        | 2.45                    | 3.3116 (18)  | 155                                  |
| $N13-H13A\cdots Cl6$                     | 0.92        | 2.67                    | 3.312 (2)    | 127                                  |
| $N13-H13B\cdots Cl4$                     | 0.92        | 2.28                    | 3.1948 (18)  | 176                                  |
| $N18-H18A\cdots Cl11$                    | 0.92        | 2.31                    | 3.2095 (18)  | 166                                  |
| $N18-H18A\cdots Cl10$                    | 0.92        | 2.88                    | 3.3683 (18)  | 115                                  |
| $N18 - H18B \cdot \cdot \cdot Cl8$       | 0.92        | 2.41                    | 3.2833 (19)  | 158                                  |
| $N18-H18B\cdots Cl5$                     | 0.92        | 2.70                    | 3.3128 (18)  | 124                                  |
| $N23 - H23A \cdot \cdot \cdot C17^{iii}$ | 0.92        | 2.44                    | 3.3079 (18)  | 157                                  |
| $N23 - H23A \cdots Cl8^{iii}$            | 0.92        | 2.69                    | 3.3229 (19)  | 126                                  |
| $N23 - H23B \cdot \cdot \cdot Cl12$      | 0.92        | 2.31                    | 3.2135 (18)  | 168                                  |
| $N23 - H23B \cdot \cdot \cdot Cl11$      | 0.92        | 2.93                    | 3.413 (2)    | 114                                  |
| N28-H28A···Cl9 <sup>iv</sup>             | 0.92        | 2.30                    | 3.2012 (18)  | 167                                  |
| $N28 - H28A \cdot \cdot \cdot Cl12^{iv}$ | 0.92        | 2.90                    | 3.3997 (18)  | 115                                  |
| $N28 - H28B \cdot \cdot \cdot Cl6$       | 0.92        | 2.43                    | 3.2874 (18)  | 155                                  |
| N28-H28 $B$ ···Cl7                       | 0.92        | 2.67                    | 3.3101 (18)  | 127                                  |

Symmetry codes: (i)  $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$ ; (ii)  $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$ ; (iii) -x + 1, -y + 1, -z + 1; (iv) x, y + 1, z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *XS* (Bruker, 2003); program(s) used to refine structure: *XL* (Bruker, 2003); molecular graphics: *XP* (Bruker, 2003); software used to prepare material for publication: *publCIF* (Westrip, 2006).

The Bruker SMART APEX diffraction facility was established at the University of Idaho with the assistance of the NSF-EPSCoR program and the M. J. Murdock Charitable Trust, Vancouver, Washington, USA.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2513).

#### References

Bloomquist, D. R. & Willett, R. D. (1982). Coord. Chem. Rev. 47, 125–164. Bruker (2002). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin,

USA.

- Bruker (2003). *SMART* (Version 5.630), *SAINT-Plus* (Version 6.45a), and *XS*, *XL* and *XP* in *SHELXTL* (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.
- Halvorson, K. E., Patterson, C. & Willett, R. D. (1990). Acta Cryst. B46, 508–519.
- Harlow, R. L. & Simonsen, S. H. (1976). Am. Crystallogr. Assoc. Ser. 2 Program Abstr. 4, Abstract PBIO.
- Kapustianik, V., Sveleba, S., Ozhybko, Ya., Tchukvinskyi, R., Mokryi, V., Soldatov, V. & Polovinko, I. (1994). Prodeedings of the 9th IEEE International Symposium on the Application of Ferroelectrics, pp. 801– 803. University Park, Pa, USA.
- Landee, C., Roberts, S. A. & Willett, R. D. (1978). J. Chem. Phys. 68, 4574–4577.
- Westrip, S. P. (2006). publCIF. In preparation.

Willett, R. D., Haugen, J. A., Lebsack, J. & Morrey, J. (1974). *Inorg. Chem.* 13, 2510–2513.

Acta Cryst. (2007). E63, m2591 [doi:10.1107/S1600536807045606]

## **Bis(diethylammonium) tetrachloridocuprate(II)**

### R. D. Willett and B. Twamley

### Comment

The room temperature structure of  $(DEA)_2CuCl_4$  was originally reported by Simonsen (Harlow & Simonsen, 1976), but full details were never published. Nevertheless, the compound has been the subject of several investigations, including thermochromism (Willett *et al.*, 1974; Bloomquist & Willett, 1982; Kapustianik *et al.*, 1994) and magnetism (Landee *et al.*, 1978). The compound undergoes a first order phase transition at 323 K, changing color from green to yellow. In the high temperature phase, there are two independent  $CuCl_4^{2-}$  anions, both with compressed tetrahedral geometry (Bloomquist & Willett, 1982) in the asymmetric unit. The unique feature of both the room and low temperature structures is the existence of three crystallographic independent  $CuCl_4^{2-}$  anions in the asymmetric unit, each with different geometries, ranging from essentially square planar coordination to compressed tetrahedral geometry.

The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF. The distortions of the  $CuCl_4^{2-}$  anions may be characterized by the average of the two larger *trans* Cl—Cu—Cl angles. For the square planar anion (containing Cu2), the average *trans* angle is 178.6°. In the anions containing Cu1 and Cu3, these values are 161.9° and 146.2° respectively, indicating increasing distortion towards tetrahedral geometry. The differences in distortion can be traced to the hydrogen bonding interactions, with stronger hydrogen bonding interactions favoring the square planar geometry over the compressed tetrahedral geometry (Halvorson *et al.*, 1990). All three  $CuCl_4^{2-}$  anions participate in four bifurcated N—H…Cl hydrogen bonds. However, the nature of the bonding interactions is different for the three anions. For the square planar anion, all four of the bifurcated hydrogen bonds are nearly symmetric. In contrast, the anion containing Cu1 has two nearly symmetric hydrogen bonds and two very asymmetric ones, while for the anion closest to tetrahedral geometry, all of the hydrogen bonds are very asymmetric. These hydrogen bonds tie the anions together into layers that lie parallel to the (101) planes, producing short Cl…Cl contacts, that are presumably responsible for the observed two-dimensional magnetic behavior (Landee *et al.*, 1978).

### **Experimental**

The compound was prepared following the published method (Willett et al., 1974).

### Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atom with C—H distances of 0.99 (CH<sub>3</sub>), 0.98 (CH<sub>2</sub>), and 0.92 (NH<sub>2</sub>) Å with  $U_{iso}(H) = 1.2U_{eq}(C)$ , (CH<sub>2</sub>, NH<sub>2</sub>) and 1.5 $U_{eq}(C)$  (CH<sub>3</sub>).

Figures



Fig. 1. Structure of [DEA]<sub>2</sub>[CuCl<sub>4</sub>] (thermal displacement 30%) showing the asymmetric unit. Hydrogen atoms omitted for clarity.



## Bis(diethylammonium) tetrachloridocuprate(II)

| Crystal data                  |                                                 |
|-------------------------------|-------------------------------------------------|
| $(C_4H_{12}N)_2[CuCl_4]$      | $F_{000} = 2196$                                |
| $M_r = 353.63$                | $D_{\rm x} = 1.451 \ {\rm Mg \ m}^{-3}$         |
| Monoclinic, $P2_1/n$          | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| Hall symbol: -P 2yn           | Cell parameters from 7583 reflections           |
| <i>a</i> = 7.2936 (15) Å      | $\theta = 2.3 - 30.0^{\circ}$                   |
| b = 14.881 (3) Å              | $\mu = 1.99 \text{ mm}^{-1}$                    |
| c = 44.751 (9)  Å             | T = 84 (2)  K                                   |
| $\beta = 90.12 \ (3)^{\circ}$ | Block, green                                    |
| $V = 4857.1 (17) \text{ Å}^3$ | $0.35 \times 0.31 \times 0.30 \text{ mm}$       |
| Z = 12                        |                                                 |
|                               |                                                 |

### Data collection

| Bruker SMART APEX<br>diffractometer                         | 11170 independent reflections          |
|-------------------------------------------------------------|----------------------------------------|
| Monochromator: graphite                                     | 9931 reflections with $I > 2\sigma(I)$ |
| Detector resolution: 8.3 pixels mm <sup>-1</sup>            | $R_{\rm int} = 0.031$                  |
| T = 84(2)  K                                                | $\theta_{\text{max}} = 27.5^{\circ}$   |
| ω scans                                                     | $\theta_{\min} = 0.9^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Bruker, 2002) | $h = -9 \rightarrow 9$                 |

| $T_{\min} = 0.510, \ T_{\max} = 0.551$ | $k = -19 \rightarrow 19$ |
|----------------------------------------|--------------------------|
| 63568 measured reflections             | $l = -58 \rightarrow 58$ |

### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.032$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.069$                                      | $w = 1/[\sigma^2(F_0^2) + (0.0203P)^2 + 4.0209P]$<br>where $P = (F_0^2 + 2F_c^2)/3$ |
| <i>S</i> = 1.15                                        | $(\Delta/\sigma)_{\rm max} = 0.002$                                                 |
| 11170 reflections                                      | $\Delta \rho_{max} = 0.41 \text{ e} \text{ Å}^{-3}$                                 |
| 418 parameters                                         | $\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

methods

### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F<sup>2</sup> against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F<sup>2</sup>, conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2$ sigma( $F^2$ ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | У            | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|--------------|-------------|---------------------------|
| C1  | 0.5586 (3) | 0.63100 (17) | 0.13404 (6) | 0.0294 (5)                |
| H1A | 0.4869     | 0.5851       | 0.1235      | 0.044*                    |
| H1B | 0.6083     | 0.6739       | 0.1195      | 0.044*                    |
| H1C | 0.4794     | 0.6628       | 0.1482      | 0.044*                    |
| C2  | 0.7141 (3) | 0.58671 (14) | 0.15075 (5) | 0.0182 (4)                |
| H2A | 0.6641     | 0.5419       | 0.1649      | 0.022*                    |
| H2B | 0.7944     | 0.5549       | 0.1364      | 0.022*                    |
| C4  | 0.9816 (3) | 0.61610 (14) | 0.18455 (5) | 0.0184 (4)                |
| H4A | 1.0688     | 0.5879       | 0.1705      | 0.022*                    |
| H4B | 0.9367     | 0.5690       | 0.1983      | 0.022*                    |
| C5  | 1.0784 (3) | 0.68851 (16) | 0.20216 (6) | 0.0292 (5)                |
| H5A | 1.1782     | 0.6617       | 0.2138      | 0.044*                    |
| H5B | 0.9911     | 0.7175       | 0.2157      | 0.044*                    |
| H5C | 1.1287     | 0.7334       | 0.1884      | 0.044*                    |
| C6  | 0.3953 (3) | 0.41620 (15) | 0.26985 (5) | 0.0224 (5)                |
| H6A | 0.2855     | 0.3882       | 0.2784      | 0.034*                    |

| H6B          | 0.4680     | 0.3705                 | 0.2595      | 0.034*              |
|--------------|------------|------------------------|-------------|---------------------|
| H6C          | 0.3589     | 0.4631                 | 0.2557      | 0.034*              |
| C7           | 0.5088 (3) | 0.45737 (14)           | 0.29464 (5) | 0.0166 (4)          |
| H7A          | 0.4356     | 0.5037                 | 0.3051      | 0.020*              |
| H7B          | 0.5420     | 0.4104                 | 0.3093      | 0.020*              |
| C9           | 0.7894 (3) | 0.54954 (14)           | 0.30513 (5) | 0.0183 (4)          |
| H9A          | 0.8255     | 0.5084                 | 0.3215      | 0.022*              |
| H9B          | 0.7137     | 0.5982                 | 0.3138      | 0.022*              |
| C10          | 0.9588 (3) | 0.58930 (17)           | 0.29112 (5) | 0.0273 (5)          |
| H10A         | 1.0290     | 0.6220                 | 0.3063      | 0.041*              |
| H10B         | 0.9230     | 0.6308                 | 0.2751      | 0.041*              |
| H10C         | 1.0345     | 0.5410                 | 0.2828      | 0.041*              |
| C11          | 0.0105 (3) | 0.87563 (15)           | 0.30933 (5) | 0.0216 (5)          |
| H11A         | -0.0626    | 0.9208                 | 0.2987      | 0.032*              |
| H11B         | -0.0575    | 0.8542                 | 0.3268      | 0.032*              |
| H11C         | 0.0356     | 0.8250                 | 0.2959      | 0.032*              |
| C12          | 0.1892 (3) | 0.91698 (14)           | 0.31938 (5) | 0.0162 (4)          |
| H12A         | 0.2535     | 0.9433                 | 0.3020      | 0.019*              |
| H12B         | 0.1648     | 0.9657                 | 0.3339      | 0.019*              |
| C14          | 0.4795 (3) | 0.88164 (14)           | 0.34734 (4) | 0.0156 (4)          |
| H14A         | 0.4490     | 0.9253                 | 0.3633      | 0.019*              |
| H14B         | 0.5530     | 0.9132                 | 0.3320      | 0.019*              |
| C15          | 0.5903 (3) | 0.80499 (15)           | 0.36044 (5) | 0.0210 (4)          |
| H15A         | 0.7013     | 0.8289                 | 0.3699      | 0.032*              |
| H15B         | 0.6248     | 0.7632                 | 0.3445      | 0.032*              |
| H15C         | 0.5166     | 0.7733                 | 0.3754      | 0.032*              |
| C16          | 0 5854 (3) | 0.58761 (15)           | 0 39748 (5) | 0.0214(5)           |
| H16A         | 0.6931     | 0.6177                 | 0.3890      | 0.032*              |
| H16B         | 0.6254     | 0.5383                 | 0.4105      | 0.032*              |
| H16C         | 0.5139     | 0.6309                 | 0 4092      | 0.032*              |
| C17          | 0.4681 (3) | 0 55059 (14)           | 0.37244(5)  | 0.0165(4)           |
| H17A         | 0.4290     | 0.6002                 | 0.3591      | 0.020*              |
| H17B         | 0.5406     | 0.5075                 | 0.3605      | 0.020*              |
| C19          | 0.1829 (3) | 0.46044 (14)           | 0.36214 (5) | 0.020<br>0.0183 (4) |
| H19A         | 0.2547     | 0.4155                 | 0.3508      | 0.0105 (1)          |
| H19R         | 0.1371     | 0.5061                 | 0.3479      | 0.022               |
| C20          | 0.1371     | 0.41500 (17)           | 0.37722 (5) | 0.022<br>0.0276 (5) |
| H20A         | -0.0543    | 0.3861                 | 0.3621      | 0.0270 (3)          |
| H20R         | -0.0490    | 0.1598                 | 0.3881      | 0.041*              |
| H20C         | 0.0688     | 0.3696                 | 0.3912      | 0.041*              |
| C21          | 0.9643 (3) | 0.37423 (16)           | 0.47100 (6) | 0.041<br>0.0272 (5) |
| H21A         | 1.0376     | 0.37423 (10)           | 0.4616      | 0.0272(3)<br>0.041* |
| H21R<br>H21B | 0.9222     | 0.3310                 | 0.4557      | 0.041*              |
| H21C         | 1 0393     | 0.3422                 | 0.4858      | 0.041*              |
| (22)         | 0.8012 (3) | 0.41546 (14)           | 0.48626 (5) | 0.0176 (4)          |
| U22<br>H22A  | 0.8/37     | 0.4501                 | 0.5015      | 0.0170(4)           |
| H22R         | 0.7260     | 0.4/82                 | 0.714       | 0.021*              |
| C24          | 0.7200     | 0.7702<br>0.38035 (14) | 0.51631 (5) | $0.021^{\circ}$     |
| U24<br>H24A  | 0.3207 (3) | 0.30033 (14)           | 0.51051 (5) | 0.0103 (4)          |
| 11270        | 0.7702     | 0.7137                 | 0.5020      | 0.020               |

| H24B | 0.5581      | 0.4206        | 0.5328        | 0.020*       |
|------|-------------|---------------|---------------|--------------|
| C25  | 0.4070 (3)  | 0.30393 (15)  | 0.52858 (5)   | 0.0222 (5)   |
| H25A | 0.2983      | 0.3282        | 0.5386        | 0.033*       |
| H25B | 0.4803      | 0.2695        | 0.5430        | 0.033*       |
| H25C | 0.3689      | 0.2645        | 0.5122        | 0.033*       |
| C26  | 0.0372 (3)  | 1.08848 (16)  | 0.45872 (5)   | 0.0254 (5)   |
| H26A | -0.0344     | 1.1176        | 0.4745        | 0.038*       |
| H26B | -0.0388     | 1.0433        | 0.4486        | 0.038*       |
| H26C | 0.0770      | 1.1337        | 0.4442        | 0.038*       |
| C27  | 0.2031 (3)  | 1.04349 (14)  | 0.47231 (4)   | 0.0163 (4)   |
| H27A | 0.2789      | 1.0889        | 0.4828        | 0.020*       |
| H27B | 0.1630      | 0.9984        | 0.4872        | 0.020*       |
| C29  | 0.4826 (3)  | 0.95297 (14)  | 0.46020 (4)   | 0.0158 (4)   |
| H29A | 0.4470      | 0.9029        | 0.4735        | 0.019*       |
| H29B | 0.5567      | 0.9961        | 0.4720        | 0.019*       |
| C30  | 0.5962 (3)  | 0.91688 (15)  | 0.43456 (5)   | 0.0220 (5)   |
| H30A | 0.7057      | 0.8870        | 0.4425        | 0.033*       |
| H30B | 0.6332      | 0.9667        | 0.4216        | 0.033*       |
| H30C | 0.5233      | 0.8737        | 0.4230        | 0.033*       |
| Cl1  | 0.57998 (8) | 0.61712 (3)   | 0.225343 (11) | 0.01953 (11) |
| C12  | 0.57444 (7) | 0.81973 (3)   | 0.199561 (11) | 0.01711 (10) |
| C13  | 0.58550 (7) | 0.88706 (3)   | 0.268534 (11) | 0.01901 (11) |
| Cl4  | 0.39458 (8) | 0.69435 (3)   | 0.285299 (11) | 0.02130 (11) |
| C15  | 0.07286 (7) | 0.69125 (3)   | 0.370252 (10) | 0.01695 (10) |
| C16  | 0.08622 (7) | 0.89147 (3)   | 0.396389 (11) | 0.01752 (10) |
| Cl7  | 0.08134 (7) | 0.81295 (3)   | 0.463214 (10) | 0.01704 (10) |
| C18  | 0.07654 (7) | 0.61251 (3)   | 0.437103 (11) | 0.01732 (10) |
| C19  | 0.39456 (7) | 0.12640 (3)   | 0.392757 (11) | 0.01813 (10) |
| C110 | 0.56943 (7) | 0.32285 (3)   | 0.373451 (11) | 0.01938 (11) |
| Cl11 | 0.41007 (7) | 0.37771 (3)   | 0.440331 (11) | 0.01867 (11) |
| Cl12 | 0.59301 (7) | 0.18030 (3)   | 0.457060 (11) | 0.01874 (11) |
| Cu1  | 0.53186 (3) | 0.756216 (16) | 0.244934 (5)  | 0.01262 (6)  |
| Cu2  | 0.07544 (3) | 0.752143 (16) | 0.416740 (5)  | 0.01178 (6)  |
| Cu3  | 0.49144 (3) | 0.251794 (16) | 0.415907 (5)  | 0.01350 (6)  |
| N3   | 0.8235 (2)  | 0.65478 (11)  | 0.16751 (4)   | 0.0137 (3)   |
| НЗА  | 0.7474      | 0.6841        | 0.1807        | 0.016*       |
| H3B  | 0.8674      | 0.6967        | 0.1542        | 0.016*       |
| N8   | 0.6793 (2)  | 0.49902 (11)  | 0.28244 (4)   | 0.0142 (3)   |
| H8A  | 0.6475      | 0.5377        | 0.2672        | 0.017*       |
| H8B  | 0.7513      | 0.4545        | 0.2744        | 0.017*       |
| N13  | 0.3071 (2)  | 0.84654 (11)  | 0.33356 (4)   | 0.0136 (3)   |
| H13A | 0.2401      | 0.8177        | 0.3481        | 0.016*       |
| H13B | 0.3375      | 0.8046        | 0.3193        | 0.016*       |
| N18  | 0.3031 (2)  | 0.50445 (11)  | 0.38495 (4)   | 0.0136 (3)   |
| H18A | 0.3414      | 0.4615        | 0.3984        | 0.016*       |
| H18B | 0.2345      | 0.5459        | 0.3953        | 0.016*       |
| N23  | 0.6875 (2)  | 0.34506 (11)  | 0.50089 (4)   | 0.0134 (3)   |
| H23A | 0.7587      | 0.3151        | 0.5146        | 0.016*       |
| H23B | 0.6513      | 0.3041        | 0.4866        | 0.016*       |

| N28  | 0.3147 (2) | 0.99868 (11) | 0.44880 (4) | 0.0135 (3) |
|------|------------|--------------|-------------|------------|
| H28A | 0.3490     | 1.0410       | 0.4349      | 0.016*     |
| H28B | 0.2427     | 0.9569       | 0.4392      | 0.016*     |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$      | $U^{23}$      |
|------|--------------|--------------|--------------|---------------|---------------|---------------|
| C1   | 0.0247 (13)  | 0.0299 (13)  | 0.0338 (13)  | -0.0032 (10)  | -0.0113 (10)  | -0.0055 (11)  |
| C2   | 0.0196 (11)  | 0.0153 (10)  | 0.0198 (10)  | -0.0040 (8)   | -0.0001 (8)   | -0.0029 (8)   |
| C4   | 0.0178 (11)  | 0.0188 (10)  | 0.0187 (10)  | 0.0050 (8)    | -0.0040 (8)   | 0.0014 (8)    |
| C5   | 0.0264 (13)  | 0.0285 (13)  | 0.0327 (13)  | -0.0002 (10)  | -0.0108 (10)  | -0.0036 (11)  |
| C6   | 0.0212 (11)  | 0.0239 (11)  | 0.0221 (11)  | -0.0061 (9)   | -0.0016 (9)   | 0.0027 (9)    |
| C7   | 0.0162 (10)  | 0.0174 (10)  | 0.0163 (10)  | -0.0023 (8)   | 0.0033 (8)    | 0.0024 (8)    |
| C9   | 0.0196 (11)  | 0.0191 (10)  | 0.0164 (10)  | -0.0012 (8)   | -0.0007 (8)   | -0.0018 (8)   |
| C10  | 0.0222 (12)  | 0.0302 (13)  | 0.0296 (13)  | -0.0091 (10)  | -0.0014 (10)  | -0.0008 (10)  |
| C11  | 0.0188 (11)  | 0.0260 (11)  | 0.0199 (11)  | 0.0022 (9)    | -0.0016 (9)   | 0.0018 (9)    |
| C12  | 0.0177 (10)  | 0.0155 (10)  | 0.0153 (10)  | 0.0029 (8)    | 0.0003 (8)    | 0.0028 (8)    |
| C14  | 0.0149 (10)  | 0.0179 (10)  | 0.0140 (9)   | -0.0016 (8)   | 0.0005 (8)    | -0.0009 (8)   |
| C15  | 0.0195 (11)  | 0.0228 (11)  | 0.0207 (11)  | 0.0011 (9)    | -0.0023 (9)   | -0.0001 (9)   |
| C16  | 0.0217 (11)  | 0.0216 (11)  | 0.0210 (11)  | -0.0054 (9)   | -0.0014 (9)   | 0.0030 (9)    |
| C17  | 0.0186 (11)  | 0.0149 (10)  | 0.0160 (10)  | -0.0008 (8)   | 0.0031 (8)    | 0.0021 (8)    |
| C19  | 0.0197 (11)  | 0.0195 (10)  | 0.0157 (10)  | -0.0006 (8)   | -0.0031 (8)   | -0.0020 (8)   |
| C20  | 0.0220 (12)  | 0.0347 (13)  | 0.0263 (12)  | -0.0109 (10)  | -0.0005 (10)  | -0.0057 (10)  |
| C21  | 0.0242 (12)  | 0.0267 (12)  | 0.0308 (13)  | -0.0030 (10)  | 0.0092 (10)   | 0.0031 (10)   |
| C22  | 0.0188 (11)  | 0.0165 (10)  | 0.0174 (10)  | -0.0040 (8)   | -0.0006 (8)   | 0.0019 (8)    |
| C24  | 0.0169 (10)  | 0.0172 (10)  | 0.0149 (10)  | 0.0033 (8)    | 0.0018 (8)    | -0.0018 (8)   |
| C25  | 0.0202 (11)  | 0.0230 (11)  | 0.0234 (11)  | -0.0027 (9)   | 0.0056 (9)    | -0.0026 (9)   |
| C26  | 0.0225 (12)  | 0.0308 (13)  | 0.0230 (11)  | 0.0086 (10)   | 0.0024 (9)    | -0.0024 (10)  |
| C27  | 0.0187 (10)  | 0.0171 (10)  | 0.0131 (9)   | 0.0013 (8)    | 0.0022 (8)    | -0.0017 (8)   |
| C29  | 0.0154 (10)  | 0.0158 (10)  | 0.0163 (10)  | 0.0014 (8)    | -0.0021 (8)   | 0.0008 (8)    |
| C30  | 0.0195 (11)  | 0.0245 (11)  | 0.0220 (11)  | 0.0059 (9)    | 0.0033 (9)    | 0.0016 (9)    |
| Cl1  | 0.0298 (3)   | 0.0133 (2)   | 0.0155 (2)   | 0.0035 (2)    | 0.0058 (2)    | 0.00167 (18)  |
| Cl2  | 0.0242 (3)   | 0.0140 (2)   | 0.0131 (2)   | 0.00066 (19)  | 0.00172 (19)  | 0.00114 (18)  |
| C13  | 0.0235 (3)   | 0.0185 (2)   | 0.0151 (2)   | -0.0063 (2)   | 0.00214 (19)  | -0.00279 (19) |
| Cl4  | 0.0291 (3)   | 0.0156 (2)   | 0.0193 (2)   | -0.0031 (2)   | 0.0114 (2)    | -0.00083 (19) |
| C15  | 0.0246 (3)   | 0.0140 (2)   | 0.0123 (2)   | -0.00008 (19) | -0.00015 (19) | -0.00072 (18) |
| Cl6  | 0.0272 (3)   | 0.0124 (2)   | 0.0129 (2)   | -0.00079 (19) | -0.00031 (19) | 0.00069 (18)  |
| Cl7  | 0.0254 (3)   | 0.0137 (2)   | 0.0120 (2)   | 0.00022 (19)  | 0.00019 (19)  | -0.00032 (18) |
| C18  | 0.0253 (3)   | 0.0125 (2)   | 0.0141 (2)   | 0.00020 (19)  | 0.00095 (19)  | 0.00078 (18)  |
| C19  | 0.0221 (3)   | 0.0180 (2)   | 0.0144 (2)   | -0.00639 (19) | -0.00049 (19) | 0.00048 (19)  |
| Cl10 | 0.0254 (3)   | 0.0136 (2)   | 0.0192 (2)   | 0.00087 (19)  | 0.0089 (2)    | 0.00093 (19)  |
| Cl11 | 0.0242 (3)   | 0.0176 (2)   | 0.0142 (2)   | 0.0067 (2)    | 0.00078 (19)  | 0.00003 (19)  |
| Cl12 | 0.0234 (3)   | 0.0135 (2)   | 0.0193 (2)   | 0.00086 (19)  | -0.0075 (2)   | 0.00020 (19)  |
| Cu1  | 0.01308 (12) | 0.01246 (12) | 0.01232 (11) | 0.00018 (9)   | 0.00094 (9)   | 0.00059 (9)   |
| Cu2  | 0.01240 (12) | 0.01158 (11) | 0.01136 (11) | -0.00023 (9)  | 0.00032 (9)   | 0.00019 (9)   |
| Cu3  | 0.01362 (12) | 0.01268 (12) | 0.01420 (12) | 0.00028 (9)   | 0.00068 (9)   | 0.00071 (9)   |
| N3   | 0.0135 (8)   | 0.0131 (8)   | 0.0146 (8)   | -0.0009 (6)   | 0.0015 (7)    | 0.0005 (7)    |
| N8   | 0.0149 (9)   | 0.0139 (8)   | 0.0137 (8)   | 0.0000 (7)    | 0.0017 (7)    | 0.0005 (7)    |

| N13             | 0.0151 (9)    | 0.0138 (8) | 0.0119 (8) | -0.0001 (7) | 0.0011 (6)  | 0.0003 (6)    |
|-----------------|---------------|------------|------------|-------------|-------------|---------------|
| N18             | 0.0144 (8)    | 0.0136 (8) | 0.0127 (8) | 0.0016 (7)  | -0.0008 (6) | ) -0.0002 (6) |
| N23             | 0.0145 (8)    | 0.0131 (8) | 0.0125 (8) | 0.0000 (7)  | 0.0000 (6)  | 0.0005 (6)    |
| N28             | 0.0143 (8)    | 0.0132 (8) | 0.0128 (8) | -0.0003 (6) | 0.0000 (7)  | -0.0003 (6)   |
|                 |               |            |            |             |             |               |
| Geometric parar | neters (Å, °) |            |            |             |             |               |
| C1—C2           |               | 1.509 (3)  | (          | С20—Н20В    |             | 0.9800        |
| C1—H1A          |               | 0.9800     | (          | С20—Н20С    |             | 0.9800        |
| C1—H1B          |               | 0.9800     | (          | C21—C22     |             | 1.504 (3)     |
| C1—H1C          |               | 0.9800     | (          | C21—H21A    |             | 0.9800        |
| C2—N3           |               | 1.491 (3)  | (          | C21—H21B    |             | 0.9800        |
| C2—H2A          |               | 0.9900     | (          | C21—H21C    |             | 0.9800        |
| C2—H2B          |               | 0.9900     | (          | C22—N23     |             | 1.489 (3)     |
| C4—N3           |               | 1.496 (3)  | (          | C22—H22A    |             | 0.9900        |
| C4—C5           |               | 1.510 (3)  | (          | С22—Н22В    |             | 0.9900        |
| C4—H4A          |               | 0.9900     | (          | C24—N23     |             | 1.495 (3)     |
| C4—H4B          |               | 0.9900     | (          | C24—C25     |             | 1.511 (3)     |
| С5—Н5А          |               | 0.9800     | (          | C24—H24A    |             | 0.9900        |
| С5—Н5В          |               | 0.9800     | (          | C24—H24B    |             | 0.9900        |
| С5—Н5С          |               | 0.9800     | (          | C25—H25A    |             | 0.9800        |
| C6—C7           |               | 1.512 (3)  | (          | С25—Н25В    |             | 0.9800        |
| С6—Н6А          |               | 0.9800     | (          | С25—Н25С    |             | 0.9800        |
| С6—Н6В          |               | 0.9800     | (          | C26—C27     |             | 1.510 (3)     |
| С6—Н6С          |               | 0.9800     | (          | C26—H26A    |             | 0.9800        |
| C7—N8           |               | 1.494 (3)  | (          | С26—Н26В    |             | 0.9800        |
| С7—Н7А          |               | 0.9900     | (          | C26—H26C    |             | 0.9800        |
| С7—Н7В          |               | 0.9900     | (          | C27—N28     |             | 1.489 (3)     |
| C9—N8           |               | 1.496 (3)  | (          | С27—Н27А    |             | 0.9900        |
| C9—C10          |               | 1.507 (3)  | (          | С27—Н27В    |             | 0.9900        |
| С9—Н9А          |               | 0.9900     | (          | C29—N28     |             | 1.490 (2)     |
| С9—Н9В          |               | 0.9900     | (          | С29—С30     |             | 1.515 (3)     |
| C10—H10A        |               | 0.9800     | (          | С29—Н29А    |             | 0.9900        |
| C10—H10B        |               | 0.9800     | (          | С29—Н29В    |             | 0.9900        |
| C10—H10C        |               | 0.9800     | (          | С30—Н30А    |             | 0.9800        |
| C11—C12         |               | 1.509 (3)  | (          | С30—Н30В    |             | 0.9800        |
| C11—H11A        |               | 0.9800     | (          | С30—Н30С    |             | 0.9800        |
| C11—H11B        |               | 0.9800     | (          | Cl1—Cu1     |             | 2.2754 (7)    |
| C11—H11C        |               | 0.9800     | (          | Cl2—Cu1     |             | 2.2617 (7)    |
| C12—N13         |               | 1.496 (2)  | (          | Cl3—Cu1     |             | 2.2490 (7)    |
| C12—H12A        |               | 0.9900     | (          | Cl4—Cu1     |             | 2.2629 (8)    |
| C12—H12B        |               | 0.9900     | (          | Cl5—Cu2     |             | 2.2692 (6)    |
| C14—N13         |               | 1.494 (3)  | (          | Cl6—Cu2     |             | 2.2659 (6)    |
| C14—C15         |               | 1.515 (3)  | (          | Cl7—Cu2     |             | 2.2684 (7)    |
| C14—H14A        |               | 0.9900     | (          | C18—Cu2     |             | 2.2689 (7)    |
| C14—H14B        |               | 0.9900     | (          | C19—Cu3     |             | 2.2475 (7)    |
| C15—H15A        |               | 0.9800     | (          | Cl10—Cu3    |             | 2.2486 (7)    |
| C15—H15B        |               | 0.9800     | (          | Cl11—Cu3    |             | 2.2495 (7)    |
| C15—H15C        |               | 0.9800     | (          | Cl12—Cu3    |             | 2.2509 (7)    |

| C16—C17    | 1.512 (3)   | N3—H3A        | 0.9200      |
|------------|-------------|---------------|-------------|
| C16—H16A   | 0.9800      | N3—H3B        | 0.9200      |
| C16—H16B   | 0.9800      | N8—H8A        | 0.9200      |
| C16—H16C   | 0.9800      | N8—H8B        | 0.9200      |
| C17—N18    | 1.495 (3)   | N13—H13A      | 0.9200      |
| С17—Н17А   | 0.9900      | N13—H13B      | 0.9200      |
| C17—H17B   | 0.9900      | N18—H18A      | 0.9200      |
| C19—N18    | 1.495 (3)   | N18—H18B      | 0.9200      |
| C19—C20    | 1.508 (3)   | N23—H23A      | 0.9200      |
| С19—Н19А   | 0.9900      | N23—H23B      | 0.9200      |
| C19—H19B   | 0.9900      | N28—H28A      | 0.9200      |
| C20—H20A   | 0.9800      | N28—H28B      | 0.9200      |
| C2—C1—H1A  | 109.5       | C22—C21—H21C  | 109.5       |
| C2—C1—H1B  | 109.5       | H21A—C21—H21C | 109.5       |
| H1A—C1—H1B | 109.5       | H21B—C21—H21C | 109.5       |
| C2—C1—H1C  | 109.5       | N23—C22—C21   | 110.78 (18) |
| H1A—C1—H1C | 109.5       | N23—C22—H22A  | 109.5       |
| H1B—C1—H1C | 109.5       | C21—C22—H22A  | 109.5       |
| N3—C2—C1   | 110.71 (18) | N23—C22—H22B  | 109.5       |
| N3—C2—H2A  | 109.5       | C21—C22—H22B  | 109.5       |
| C1—C2—H2A  | 109.5       | H22A—C22—H22B | 108.1       |
| N3—C2—H2B  | 109.5       | N23—C24—C25   | 110.54 (17) |
| C1—C2—H2B  | 109.5       | N23—C24—H24A  | 109.5       |
| H2A—C2—H2B | 108.1       | C25—C24—H24A  | 109.5       |
| N3—C4—C5   | 110.52 (17) | N23—C24—H24B  | 109.5       |
| N3—C4—H4A  | 109.5       | C25—C24—H24B  | 109.5       |
| С5—С4—Н4А  | 109.5       | H24A—C24—H24B | 108.1       |
| N3—C4—H4B  | 109.5       | C24—C25—H25A  | 109.5       |
| C5—C4—H4B  | 109.5       | С24—С25—Н25В  | 109.5       |
| H4A—C4—H4B | 108.1       | H25A—C25—H25B | 109.5       |
| С4—С5—Н5А  | 109.5       | С24—С25—Н25С  | 109.5       |
| C4—C5—H5B  | 109.5       | H25A—C25—H25C | 109.5       |
| H5A—C5—H5B | 109.5       | H25B—C25—H25C | 109.5       |
| С4—С5—Н5С  | 109.5       | C27—C26—H26A  | 109.5       |
| H5A—C5—H5C | 109.5       | С27—С26—Н26В  | 109.5       |
| H5B—C5—H5C | 109.5       | H26A—C26—H26B | 109.5       |
| С7—С6—Н6А  | 109.5       | С27—С26—Н26С  | 109.5       |
| С7—С6—Н6В  | 109.5       | H26A—C26—H26C | 109.5       |
| H6A—C6—H6B | 109.5       | H26B—C26—H26C | 109.5       |
| С7—С6—Н6С  | 109.5       | N28—C27—C26   | 110.65 (17) |
| Н6А—С6—Н6С | 109.5       | N28—C27—H27A  | 109.5       |
| Н6В—С6—Н6С | 109.5       | С26—С27—Н27А  | 109.5       |
| N8—C7—C6   | 110.77 (17) | N28—C27—H27B  | 109.5       |
| N8—C7—H7A  | 109.5       | С26—С27—Н27В  | 109.5       |
| С6—С7—Н7А  | 109.5       | H27A—C27—H27B | 108.1       |
| N8—C7—H7B  | 109.5       | N28—C29—C30   | 110.66 (16) |
| С6—С7—Н7В  | 109.5       | N28—C29—H29A  | 109.5       |
| H7A—C7—H7B | 108.1       | С30—С29—Н29А  | 109.5       |
| N8—C9—C10  | 110.77 (18) | N28—C29—H29B  | 109.5       |

| N8—C9—H9A     | 109.5       | С30—С29—Н29В  | 109.5       |
|---------------|-------------|---------------|-------------|
| С10—С9—Н9А    | 109.5       | H29A—C29—H29B | 108.1       |
| N8—C9—H9B     | 109.5       | С29—С30—Н30А  | 109.5       |
| С10—С9—Н9В    | 109.5       | С29—С30—Н30В  | 109.5       |
| Н9А—С9—Н9В    | 108.1       | H30A—C30—H30B | 109.5       |
| С9—С10—Н10А   | 109.5       | С29—С30—Н30С  | 109.5       |
| C9—C10—H10B   | 109.5       | H30A—C30—H30C | 109.5       |
| H10A—C10—H10B | 109.5       | H30B-C30-H30C | 109.5       |
| C9—C10—H10C   | 109.5       | Cl3—Cu1—Cl2   | 92.05 (2)   |
| H10A—C10—H10C | 109.5       | Cl3—Cu1—Cl4   | 93.11 (2)   |
| H10B-C10-H10C | 109.5       | Cl2—Cu1—Cl4   | 161.53 (2)  |
| C12—C11—H11A  | 109.5       | Cl3—Cu1—Cl1   | 160.34 (2)  |
| C12—C11—H11B  | 109.5       | Cl2—Cu1—Cl1   | 90.72 (2)   |
| H11A—C11—H11B | 109.5       | Cl4—Cu1—Cl1   | 90.36 (2)   |
| C12—C11—H11C  | 109.5       | Cl6—Cu2—Cl7   | 90.17 (2)   |
| H11A—C11—H11C | 109.5       | Cl6—Cu2—Cl8   | 177.81 (2)  |
| H11B—C11—H11C | 109.5       | Cl7—Cu2—Cl8   | 89.83 (2)   |
| N13—C12—C11   | 109.63 (17) | Cl6—Cu2—Cl5   | 89.83 (2)   |
| N13—C12—H12A  | 109.7       | Cl7—Cu2—Cl5   | 179.39 (2)  |
| C11—C12—H12A  | 109.7       | Cl8—Cu2—Cl5   | 90.15 (2)   |
| N13—C12—H12B  | 109.7       | Cl9—Cu3—Cl10  | 94.63 (2)   |
| C11—C12—H12B  | 109.7       | Cl9—Cu3—Cl11  | 146.36 (2)  |
| H12A—C12—H12B | 108.2       | Cl10—Cu3—Cl11 | 94.95 (3)   |
| N13—C14—C15   | 110.14 (17) | Cl9—Cu3—Cl12  | 95.01 (3)   |
| N13-C14-H14A  | 109.6       | Cl10—Cu3—Cl12 | 146.12 (2)  |
| C15—C14—H14A  | 109.6       | Cl11—Cu3—Cl12 | 94.75 (2)   |
| N13—C14—H14B  | 109.6       | C2—N3—C4      | 113.96 (16) |
| C15-C14-H14B  | 109.6       | C2—N3—H3A     | 108.8       |
| H14A—C14—H14B | 108.1       | C4—N3—H3A     | 108.8       |
| C14—C15—H15A  | 109.5       | C2—N3—H3B     | 108.8       |
| C14—C15—H15B  | 109.5       | C4—N3—H3B     | 108.8       |
| H15A—C15—H15B | 109.5       | H3A—N3—H3B    | 107.7       |
| C14—C15—H15C  | 109.5       | C7—N8—C9      | 114.01 (16) |
| H15A—C15—H15C | 109.5       | C7—N8—H8A     | 108.8       |
| H15B—C15—H15C | 109.5       | C9—N8—H8A     | 108.8       |
| C17—C16—H16A  | 109.5       | C7—N8—H8B     | 108.8       |
| C17—C16—H16B  | 109.5       | C9—N8—H8B     | 108.8       |
| H16A—C16—H16B | 109.5       | H8A—N8—H8B    | 107.6       |
| C17—C16—H16C  | 109.5       | C14—N13—C12   | 114.38 (16) |
| H16A—C16—H16C | 109.5       | C14—N13—H13A  | 108.7       |
| H16B—C16—H16C | 109.5       | C12—N13—H13A  | 108.7       |
| N18—C17—C16   | 110.17 (17) | C14—N13—H13B  | 108.7       |
| N18—C17—H17A  | 109.6       | C12—N13—H13B  | 108.7       |
| C16—C17—H17A  | 109.6       | H13A—N13—H13B | 107.6       |
| N18—C17—H17B  | 109.6       | C19—N18—C17   | 114.64 (16) |
| C16—C17—H17B  | 109.6       | C19—N18—H18A  | 108.6       |
| H17A—C17—H17B | 108.1       | C17—N18—H18A  | 108.6       |
| N18—C19—C20   | 110.09 (17) | C19—N18—H18B  | 108.6       |
| N18—C19—H19A  | 109.6       | C17—N18—H18B  | 108.6       |

| С20—С19—Н19А  | 109.6 | H18A—N18—H18B | 107.6       |
|---------------|-------|---------------|-------------|
| N18—C19—H19B  | 109.6 | C22—N23—C24   | 114.25 (16) |
| С20—С19—Н19В  | 109.6 | C22—N23—H23A  | 108.7       |
| H19A—C19—H19B | 108.2 | C24—N23—H23A  | 108.7       |
| C19—C20—H20A  | 109.5 | C22—N23—H23B  | 108.7       |
| С19—С20—Н20В  | 109.5 | C24—N23—H23B  | 108.7       |
| H20A—C20—H20B | 109.5 | H23A—N23—H23B | 107.6       |
| С19—С20—Н20С  | 109.5 | C27—N28—C29   | 114.35 (15) |
| H20A—C20—H20C | 109.5 | C27—N28—H28A  | 108.7       |
| H20B-C20-H20C | 109.5 | C29—N28—H28A  | 108.7       |
| C22—C21—H21A  | 109.5 | C27—N28—H28B  | 108.7       |
| C22—C21—H21B  | 109.5 | C29—N28—H28B  | 108.7       |
| H21A—C21—H21B | 109.5 | H28A—N28—H28B | 107.6       |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                                           | <i>D</i> —Н                            | $H \cdots A$                                     | $D \cdots A$                              | D—H··· $A$ |
|-------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|-------------------------------------------|------------|
| N3—H3A····Cl2                                                     | 0.92                                   | 2.53                                             | 3.3754 (19)                               | 153        |
| N3—H3A…Cl1                                                        | 0.92                                   | 2.55                                             | 3.192 (2)                                 | 127        |
| N3—H3B···Cl10 <sup>i</sup>                                        | 0.92                                   | 2.30                                             | 3.1986 (18)                               | 167        |
| N3—H3B···Cl9 <sup>i</sup>                                         | 0.92                                   | 2.92                                             | 3.421 (2)                                 | 116        |
| N8—H8A…Cl1                                                        | 0.92                                   | 2.27                                             | 3.1835 (18)                               | 172        |
| N8—H8B···Cl3 <sup>ii</sup>                                        | 0.92                                   | 2.47                                             | 3.3076 (19)                               | 151        |
| N8—H8B···Cl2 <sup>ii</sup>                                        | 0.92                                   | 2.64                                             | 3.3148 (18)                               | 130        |
| N13—H13A…Cl5                                                      | 0.92                                   | 2.45                                             | 3.3116 (18)                               | 155        |
| N13—H13A…Cl6                                                      | 0.92                                   | 2.67                                             | 3.312 (2)                                 | 127        |
| N13—H13B…Cl4                                                      | 0.92                                   | 2.28                                             | 3.1948 (18)                               | 176        |
| N18—H18A…Cl11                                                     | 0.92                                   | 2.31                                             | 3.2095 (18)                               | 166        |
| N18—H18A…Cl10                                                     | 0.92                                   | 2.88                                             | 3.3683 (18)                               | 115        |
| N18—H18B…Cl8                                                      | 0.92                                   | 2.41                                             | 3.2833 (19)                               | 158        |
| N18—H18B…Cl5                                                      | 0.92                                   | 2.70                                             | 3.3128 (18)                               | 124        |
| N23—H23A···Cl7 <sup>iii</sup>                                     | 0.92                                   | 2.44                                             | 3.3079 (18)                               | 157        |
| N23—H23A···Cl8 <sup>iii</sup>                                     | 0.92                                   | 2.69                                             | 3.3229 (19)                               | 126        |
| N23—H23B…Cl12                                                     | 0.92                                   | 2.31                                             | 3.2135 (18)                               | 168        |
| N23—H23B…Cl11                                                     | 0.92                                   | 2.93                                             | 3.413 (2)                                 | 114        |
| N28—H28A···Cl9 <sup>iv</sup>                                      | 0.92                                   | 2.30                                             | 3.2012 (18)                               | 167        |
| N28—H28A···Cl12 <sup>iv</sup>                                     | 0.92                                   | 2.90                                             | 3.3997 (18)                               | 115        |
| N28—H28B…Cl6                                                      | 0.92                                   | 2.43                                             | 3.2874 (18)                               | 155        |
| N28—H28B…Cl7                                                      | 0.92                                   | 2.67                                             | 3.3101 (18)                               | 127        |
| Symmetry codes: (i) $-x+3/2$ , $y+1/2$ , $-z+1/2$ ; (ii) $-x+3/2$ | 3/2, <i>y</i> -1/2, - <i>z</i> +1/2; ( | iii) − <i>x</i> +1, − <i>y</i> +1, − <i>z</i> +1 | ; (iv) <i>x</i> , <i>y</i> +1, <i>z</i> . |            |





